We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A domain decomposition method for stochastic elliptic differential equations

Formal Metadata

Title
A domain decomposition method for stochastic elliptic differential equations
Title of Series
Number of Parts
17
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In this talk I will discuss the use of a Domain Decomposition method to reduced the computational complexity of classical problems arising in Uncertainty Quantification and stochastic Partial Differential equations. The first problem concerns the determination of the Karhunen-Loeve decomposition of a stochastic process given its covariance function. We propose to solve independently the decomposition problem over a set of subdomains, each with low complexity cost, and subsequently assemble a reduced problem to determined the global problem solution. We propose error estimates to control the resulting approximation error. Second, these ideas are extended to construct an efficient sampling approach for elliptic problems with stochastic coefficients expanded in a KL form. Here, we rely on the resolution of low complexity local stochastic elliptic problems to exhibit contributions to the condensed stochastic problem for the unknown boundary values at the internal subdomain boundaries. By relying intensively on local resolutions, that can be performed independently, the proposed approaches are naturally suited to parallel implementation and we will provide scalability results.