We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Parameter space dimension reduction for forward and inverse uncertainty quantification

Formal Metadata

Title
Parameter space dimension reduction for forward and inverse uncertainty quantification
Title of Series
Number of Parts
17
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Scientists and engineers use computer simulations to study relationships between a physical model's input parameters and its output predictions. However, thorough parameter studies---e.g., constructing response surfaces, optimizing, or averaging---are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable parameter studies in these cases, the engineer may attempt to reduce the dimension of the model's input parameter space. I will (i) describe computational methods for discovering low-dimensional structures in the parameter-to-quantity-of-interest map, (ii) propose strategies for exploiting the low-dimensional structures to enable otherwise infeasible parameter studies, and (iii) review results from several science and engineering applications.