We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Bayesian optimal experimental design using Laplace-based importance sampling

Formal Metadata

Title
Bayesian optimal experimental design using Laplace-based importance sampling
Title of Series
Number of Parts
17
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In this talk, the focus is on optimizing strategies for the efficient computation of the inner loop of the classical double-loop Monte Carlo for Bayesian optimal experimental design. We propose the use of the Laplace approximation as an effective means of importance sampling, leading to a substantial reduction in computational work. This approach also efficiently mitigates the risk of numerical underflow. Optimal values for the method parameters are derived, where the average computational cost is minimized subject to a desired error tolerance. We demonstrate the computational efficiency of our method, as well as for a more recent approach that approximates using the Laplace method the return value of the inner loop. Finally, we present a set of numerical examples showing the efficiency of our method. The first example is a scalar problem that is linear in the uncertain parameter. The second example is a nonlinear scalar problem. The last example deals with sensor placements in electrical impedance tomography to recover the fiber orientation in laminate composites.