We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Managing complex data science experiment configurations with Hydra

Formale Metadaten

Titel
Managing complex data science experiment configurations with Hydra
Serientitel
Anzahl der Teile
112
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 4.0 International:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
[Liffey Hall 1 on 2022-07-14] Data science experiments have a lot of moving parts. Datasets, models, hyperparameters all have multiple knobs and dials. This means that keeping track of the exact parameter values can be tedious or error prone. Thankfully you're not the only ones facing this problem and solutions are becoming available. One of them is Hydra from Meta AI Research. Hydra is an open-source application framework, which helps you handle complex configurations in an easy and elegant way. Experiments written with Hydra are traceable and reproducible with minimal boilerplate code. In my talk I will go over the main features of Hydra and the OmegaConf configuration system it is based on. I will show examples of elegant code written with Hydra and talk about ways to integrate it with other open-source tools such as MLFlow.