We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Dimension reduction of the input parameter space of vector-valued functions

Formal Metadata

Title
Dimension reduction of the input parameter space of vector-valued functions
Title of Series
Number of Parts
17
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Approximation of multivariate functions is a difficult task when the number of input parameters is large. Identifying the directions where the function doesn't significantly vary is a key step for complexity reduction. Among other dimension reduction techniques, the Active Subspace method uses gradients of a scalar-valued function to reduce the parameter space. In this talk, we extend this methodology for vector-valued functions, e.g. functions with multiple scalar outputs or functions taking values in function spaces. Numerical examples reveal the importance of the choice of the metric to measure errors.