We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Large scale micro-photometry for high resolution pH-characterization during electro-osmotic pumping and modular micro-swimming

00:00

Formale Metadaten

Titel
Large scale micro-photometry for high resolution pH-characterization during electro-osmotic pumping and modular micro-swimming
Serientitel
Anzahl der Teile
40
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Micro-fluidic pumps as well as artificial micro-swimmers are conveniently realized exploiting phoretic solvent flows based on local gradients of temperature, electrolyte concentration or pH. We here present a facile micro-photometric method for monitoring pH gradients and demonstrate its performance and scope on different experimental situations including an electro-osmotic pump and modular micro-swimmers assembled from ion exchange resin beads and polystyrene colloids. In combination with the present microscope and DSLR camera our method offers a 2 μm spatial resolution at video frame rate over a field of view of 3920 × 2602 μm2. Under optimal conditions we achieve a pH-resolution of 0.05 with about equal contributions from statistical and systematical uncertainties. Our quantitative micro-photometric characterization of pH gradients which develop in time and reach out several mm is anticipated to provide valuable input for reliable modeling and simulations of a large variety of complex flow situations involving pH-gradients including artificial micro-swimmers, microfluidic pumping or even electro-convection.
Maßstab <Messtechnik>GleitlagerVideotechnikComputeranimation
ÜberlagerungsempfängerBasis <Elektrotechnik>RaumauflösungMaßstab <Messtechnik>BrechzahlFörderleistungPräzessionMessungBlatt <Papier>DruckgradientTonhöheFehlprägungEisHerbstSensorComputeranimation
SchnittmusterOptisches FilterFarbcodierungIntensitätsverteilungLadungsgekoppeltes BauelementPACMaßstab <Messtechnik>IntensitätsverteilungSchnittmusterBeleuchtungsstärkeKaliber <Walzwerk>Optische DichteBuntheitChannelingBrechzahlSensorBildsensorEnergielückeMessungLichtPhasengesteuerte AntennengruppeBahnelementKardierenTrenntechnikKonzentrator <Nachrichtentechnik>Computeranimation
Kalibrieren <Fertigungstechnik>Maßstab <Messtechnik>ChannelingOptische DichtePufferlagerUnterwasserfahrzeugKaliber <Walzwerk>Masse <Physik>PagerDiagramm
Osmotischer DruckSpeckle-InterferometrieWärmeaustauscherPumpen <Laser>FörderleistungIonHammerHandbuchbindereiTunerWerkzeugHerbstComputeranimationDiagramm
Schwimmer <Technik>Front <Meteorologie>ADSLSchwimmer <Technik>FärberModell <Gießerei>NiederschlagsmengeComputeranimationDiagramm
Schwimmer <Technik>MessungMitlauffilterVideotechnikGleichstromAnstellwinkelSchwimmer <Technik>Computeranimation
Schwimmer <Technik>Schwimmer <Technik>AnstellwinkelMitlauffilterDruckgradientVideotechnikGleichstromComputeranimationDiagramm
Schwimmer <Technik>UnterwasserfahrzeugComputeranimationDiagramm
Schwimmer <Technik>AmplitudeGleichstromAvro ArrowComputeranimation
Schwimmer <Technik>GleichstromAmplitudeComputeranimation
Schwimmer <Technik>KlangeffektPatrone <Munition>IrrlichtKernstrahlungZentralsternElektrische StromdichteComputeranimation
Schwimmer <Technik>KlangeffektComputeranimation
Schwimmer <Technik>Maßstab <Messtechnik>ADSLTeilchenSchwimmer <Technik>Schwache LokalisationNeutronenaktivierungBlatt <Papier>MessungDruckgradientGruppenlaufzeitCocktailparty-EffektBrennstoffTürglockePagerComputeranimation
Cocktailparty-EffektBlatt <Papier>
Transkript: Englisch(automatisch erzeugt)
Hello, in this study, we developed a large-scale photometry method for pH detection, which has potential implications in a large variety of complex flow situations involving pH gradients. The motivation comes from the disadvantage of pH measurement using indicator paper or pH meter,
which either have poor quantitative precession or no spatial resolution. Our method utilizes low-cost lab setup, namely a low-resolution microscope, a DLSR, and a laptop for data analysis.
The camera sensor is composed of individual pixels, each made sensitive for light in red, green, or blue band by a suitable filter. Color discrimination on the sensor uses a bio-pattern. Using a home-written pattern script, we separate the three color channels into three separate arrays.
The absorbance or light transmitting through a sample is given by the Beer-Lambert law. According to the equation, the absorbance ratio of two colors equals the ratio of attenuation coefficients, which renders the calibration and measurements independent of indicator concentration, sample thickness, and illumination intensity.
We calibrate the ratio over the absorbance of two different channels to pH using buffer solution of different pH. Choosing a suitable indicator-fluid mixture, the ratio of attenuation coefficients monotonically decreases with increase in pH.
Then, we interpolate the measured data points for the calibration curve. The performance of the method was first tested on an electro-automotive pump based on an ion exchange-induced electro-automotive flow.
In the center, you see the ion exchanger. Now it starts exchange. Here we reach a pH resolution of 0.02 on averaging readily over 20 subsequent images and a time resolution of 4 seconds.
For a more complex modular swimming situation, we also test the performance under ideal conditions, that is with optical impurities from the precipities of dye and passive cargo. Modular swimmer is accompanied with an asymmetric pH gradient, which is deepened in the front and extended in the pH range in the back of the swimmer.
Due to the asymmetry of the gradient, we use line analysis for select angles with respect to the swimming direction. Under this non-ideal preparation condition, the curves are noisy with several statistically distributed and uncorrelated peaks along the radial direction.
However, the data quality from this dirty case is already sufficient to obtain a good qualitative impression on the characteristic effects. Our method can also be applied to measure the pH gradients generated by other fratic swimmers,
for example, the large variety of catalytic generous particles or for asymmetric particles in AC electric fields. With enough resolution, our method should further allow local pH measurement along the surfaces of active particles. Thus, it could be used to test the pH taxes of biohybrid macrosystems and artificial swimmers.
Furthermore, it may be interesting to apply our method to the complex collective behavior of groups of fratic microswimmers. For more details, please read our paper. Thanks for your attention.