We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Baby steps in short-text classification with python

Formale Metadaten

Titel
Baby steps in short-text classification with python
Serientitel
Anzahl der Teile
160
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Baby steps in short-text classification with python [EuroPython 2017 - Talk - 2017-07-12 - Anfiteatro 1] [Rimini, Italy] This talk aims to provide an information about where and how one could start using simple text-classification models. Additionally it will be shown how a python classificator can be incorporated into existing system. The presentation will be broken into 3 topics and a conclusion. First, the presentation provides an overview of how the problem was approached, what information was useful or not and how the technologies stack shown in the second part was decided on. Second part will concentrate on using Naive Bayesian model for text classification. How the model was trained, what difficulties were met and how they were solved. Additionally the talk will give a brief overview of other possible model choices (random forest, SVM). The third part will show how the model was deployed and used in the production. One architecture solution will be shown in details (REST calls between Java Client and Flask Server), while other possibilities will be mentioned briefly. As the conclusion the possible improvements for the model in use will be suggested as well as short example of supervised learning algorithm (CNN) and unsupervised classification algorithm (LDA) for the same purpose. Along with the examples the proc and cons will be named. Technologies mentioned and used: Flask, Green Unicorn vs uWSGI, NLTK, Sci-Kit, Python 3, Java 8, Jersey, Docker, Kubernete