We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Hybrid fuzzy-stochastic predictive modeling and computation

Formale Metadaten

Titel
Hybrid fuzzy-stochastic predictive modeling and computation
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Predictive computational science is an emerging discipline concerned with assessing the predictability of mathematical and computational tools, particularly in the presence of inevitable uncertainty and limited information. In this talk, I will present a new comprehensive predictive methodology embedded in a new hybrid fuzzy-stochastic framework to predict physical events described by partial differential equations (PDEs) and subject to both random (aleatoric) and non-random (epistemic) uncertainty. In the new framework the uncertain parameters will be characterized by random fields with fuzzy moments. This will result in a new class of PDEs with hybrid fuzzy-stochastic parameters, coined fuzzy-stochastic PDEs, for which forward and inverse problems need to be solved. I will demonstrate the importance and feasibility of the new methodology by applying it to a complex problem: prediction of the response of materials with hierarchical microstructure to external forces. This model problem will serve as an illustrative example, one that cannot be tackled by today’s UQ methodologies.