We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Uncertainty quantification for multiscale kinetic equations with uncertain coefficients

Formale Metadaten

Titel
Uncertainty quantification for multiscale kinetic equations with uncertain coefficients
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk we will study the generalized polynomial chaos-stochastic Galerkin (gPC-SG) approach to kinetic equations with uncertain coefficients/inputs, and multiple time or space scales, and show that they can be made asymptotic-preserving, in the sense that the gPC-SG scheme preserves various asymptotic limits in the discrete space. This allows the implementation of the gPC methods for these problems without numerically resolving (spatially, temporally or by gPC modes) the small scales. Rigorous analysis, based on hypocoercivity of the collision operator, will be provided for both linear transport and nonlinear Vlasov-Poisson-Fokker-Planck system to study the regularity and long-time behavior (sensitivity analysis) of the solution in the random space, and to prove that these schemes are stochastically asymptotic preserving.