We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A domain decomposition method for stochastic elliptic differential equations

Formale Metadaten

Titel
A domain decomposition method for stochastic elliptic differential equations
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk I will discuss the use of a Domain Decomposition method to reduced the computational complexity of classical problems arising in Uncertainty Quantification and stochastic Partial Differential equations. The first problem concerns the determination of the Karhunen-Loeve decomposition of a stochastic process given its covariance function. We propose to solve independently the decomposition problem over a set of subdomains, each with low complexity cost, and subsequently assemble a reduced problem to determined the global problem solution. We propose error estimates to control the resulting approximation error. Second, these ideas are extended to construct an efficient sampling approach for elliptic problems with stochastic coefficients expanded in a KL form. Here, we rely on the resolution of low complexity local stochastic elliptic problems to exhibit contributions to the condensed stochastic problem for the unknown boundary values at the internal subdomain boundaries. By relying intensively on local resolutions, that can be performed independently, the proposed approaches are naturally suited to parallel implementation and we will provide scalability results.