We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Bayesian optimal experimental design using Laplace-based importance sampling

Formale Metadaten

Titel
Bayesian optimal experimental design using Laplace-based importance sampling
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk, the focus is on optimizing strategies for the efficient computation of the inner loop of the classical double-loop Monte Carlo for Bayesian optimal experimental design. We propose the use of the Laplace approximation as an effective means of importance sampling, leading to a substantial reduction in computational work. This approach also efficiently mitigates the risk of numerical underflow. Optimal values for the method parameters are derived, where the average computational cost is minimized subject to a desired error tolerance. We demonstrate the computational efficiency of our method, as well as for a more recent approach that approximates using the Laplace method the return value of the inner loop. Finally, we present a set of numerical examples showing the efficiency of our method. The first example is a scalar problem that is linear in the uncertain parameter. The second example is a nonlinear scalar problem. The last example deals with sensor placements in electrical impedance tomography to recover the fiber orientation in laminate composites.