We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A class of nonlinear filters induced by local couplings

00:00

Formale Metadaten

Titel
A class of nonlinear filters induced by local couplings
Alternativer Titel
Inference via low-dimensional couplings
Serientitel
Anzahl der Teile
17
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Integration against an intractable probability measure is among the fundamental challenges of statistical inference, particularly in the Bayesian setting. A principled approach to this problem seeks a deterministic coupling of the measure of interest with a tractable "reference" measure (e.g., a standard Gaussian). This coupling is induced by a transport map, and enables direct simulation from the desired measure simply by evaluating the transport map at samples from the reference. Yet characterizing such a map---e.g., representing, constructing, and evaluating it---grows challenging in high dimensions. We use the conditional independence structure of the target measure to establish the existence of certain low-dimensional couplings, induced by transport maps that are sparse or decomposable. We also describe conditions, common in Bayesian inverse problems, under which transport maps have a particular low-rank structure. Our analysis not only facilitates the construction of couplings in high-dimensional settings, but also suggests new inference methodologies. For instance, in the context of nonlinear and non-Gaussian state space models, we will describe new variational algorithms for nonlinear smoothing and sequential parameter estimation. We will also outline a new class of nonlinear filters induced by local couplings, for inference in high-dimensional spatiotemporal processes with chaotic dynamics.