We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Network Embeddings based Recommendation Model with multi-factor consideration

Formale Metadaten

Titel
Network Embeddings based Recommendation Model with multi-factor consideration
Serientitel
Anzahl der Teile
112
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 4.0 International:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The method consists of three main steps: First, network embedding formulation performed on each user specific behavior network; Then, embeddings weight distribution estimated through intermediate layers of network with final layer for target (item purchased as labels); Finally, both factors: (a) Learned weights from implicit data (cross-domain) and (b) explicit factors from domain data used by multi-factorization method for recommendations. The proposed method transfers knowledge across implicit and explicit factors and associated dimensions. The suggested approach tested real-world data with evidence of outperforming existing algorithms with significant lift in recommendation accuracy. Empirical experimentation outcomes illustrate the potential of both factors for making effective recommendations.