We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Simple ETL in python 3.5+ with Bonobo

Formale Metadaten

Titel
Simple ETL in python 3.5+ with Bonobo
Serientitel
Anzahl der Teile
160
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Simple ETL in python 3.5+ with Bonobo [EuroPython 2017 - Talk - 2017-07-12 - Arengo] [Rimini, Italy] Simple is better than complex, right? That’s true for data pipelines too. For more than 5 years, I hacked together extract-transform-load (ETL) processes in various different positions (ETL is just a fancy term for «bunch of things that take data somewhere and put it elsewhere, eventually transformed»). I did it as a founder, as a consultant, as a technical co-founder, for some side projects, and now in a big corp (to be continued…). In each case, I felt frustrated with the tools available, and in some serious cases, I had to hack things myself to get the job done. https://www.bonobo-project.org/ Bonobo is the repackaging of my past experiences for python 3.5+, and grasping the basics should not take more than the length of the presentation. Topics outline (subject to small changes) : • INTRO : State of the art / different tools for different needs. • Where does it come from. • Writing a data processor. • Running and monitoring data jobs. • OUTRO : The road ahead. • Q&A Bonobo is the glue you need to tie together regular functions in a transformation graph (think unix pipes). Execution strategies are abstracted so you can focus on the real operations. As a result, you can engineer simple and testable systems, using the same good computer development practices as you use in -insert your favorite field here-. Spoiler : there is no «big data» in this talk