We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Developing elegant workflows in Python code with Apache Airflow

Formale Metadaten

Titel
Developing elegant workflows in Python code with Apache Airflow
Serientitel
Anzahl der Teile
160
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Developing elegant workflows in Python code with Apache Airflow [EuroPython 2017 - Talk - 2017-07-13 - Anfiteatro 1] [Rimini, Italy] Every time a new batch of data comes in, you start a set of tasks. Some tasks can run in parallel, some must run in a sequence, perhaps on a number of different machines. That's a workflow. Did you ever draw a block diagram of your workflow? Imagine you could bring that diagram to life and actually run it as it looks on the whiteboard. With Airflow you can just about do that. http://airflow.apache.org Apache Airflow is an open-source Python tool for orchestrating data processing pipelines. In each workflow tasks are arranged into a directed acyclic graph (DAG). Shape of this graph decides the overall logic of the workflow. A DAG can have many branches and you can decide which of them to follow and which to skip at execution time. This creates a resilient design because each task can be retried multiple times if an error occurs. Airflow can even be stopped entirely and running workflows will resume by restarting the last unfinished task. Logs for each task are stored separately and are easily accessible through a friendly web UI. In my talk I will go over basic Airflow concepts and through examples demonstrate how easy it is to define your own workflows in Python code. We'll also go over ways to extend Airflow by adding custom task operators, sensors and plugins