We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Deep Learning your Broadband Network @HOME

Formale Metadaten

Titel
Deep Learning your Broadband Network @HOME
Serientitel
Anzahl der Teile
160
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Deep Learning your Broadband Network @HOME [EuroPython 2017 - Talk - 2017-07-14 - Anfiteatro 1] [Rimini, Italy] Most of us have broadband internet services at home. Sometimes it does not work well, and we visit speed test page and check internet speed for ourselves or call cable company to report the service failure. As a Python programmer, have you ever tried to automate the internet speed test on a regular basis? Have you ever thought about logging the data and analyzing the time series ? In this talk, we will go through the whole process of data mining and knowledge discovery. Firstly we write a script to run speed test periodically and log the metric. Then we parse the log data and convert them into a time series and visualize the data for a certain period. Next we conduct some data analysis; finding trends, forecasting, and detecting anomalous data. There will be several statistic or deep learning techniques used for the analysis; ARIMA (Autoregressive Integrated Moving Average), LSTM (Long Short Term Memory). The goal is to provide basic idea how to run speed test and collect metrics by automated script in Python. Also, I will provide high level concept of the methodologies for analyzing time series data. Also, I would like to motivate Python people to try this at home. This session is designed to be accessible to everyone, including anyone with no expertise in mathematics, computer science. Understandings of basic concepts of machine learning and some Python tools bringing such concepts into practice might be helpful, but not necessary for the audience