We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Facing the challenge of climate change with xarray and Dask

Formale Metadaten

Titel
Facing the challenge of climate change with xarray and Dask
Serientitel
Anzahl der Teile
160
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Facing the challenge of climate change with xarray and Dask EuroPython 2017 - Talk - 2017-07-12 - Anfiteatro 1. Rimini, Italy In the last years climate change has become one of the most important topic. For any period longer than a few days science is not able to provide comparable forecasts, but still a lot of useful information about future climate conditions can be gained on time scale of a few months to even several years. Climate forecast and climate projections data are quite complex to analyse and represent. The Python science ecosystem proves extremely effective as a platform to retrieve, analyse, process and present this type of data. The backbone of the platform is the n-dimensional array library xarray that provides the perfect mix between pandas data structures and dask performance and parallelization. Reliable climate forecasts and climate projections are now available from the Copernicus Climate Change Service, operated by ECMWF, that will become the central hub for European effort in study and mitigate climate change impacts. The service also provides access to an open cloud platform, the CDS Toolbox, that is based on the Python 3 xarray/dask/pandas stack. In this talk I will present how to retrieve, analyse, process and display climate data in a generic use case with xarray and with the Copernicus CDS Toolbox.