We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Progressive Hedging in Nonconvex Stochastic Optimization

Formale Metadaten

Titel
Progressive Hedging in Nonconvex Stochastic Optimization
Alternativer Titel
Progressive Hedging in Nonconvex Stochastic Programming
Serientitel
Anzahl der Teile
6
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The progressive hedging algorithm minimizes an expected "cost" by iteratively decomposing into separate subproblems for each scenario. Up to now it has depended on convexity of the underlying "cost" function with respect to the decision variables and the constraints on them. However, a new advance makes it possible to obtain convergence to a locally optimal solution when the procedure is executed close enough to it and a kind of second-order local sufficiency condition is satisfied. Besides applications in which costs and associated constraints may directly be nonconvex, there are applications to stochastic programming problems in which those are convex but the probabilities for the scenarios may be decision-dependent. For example, in a two-stage problem the probabilities in the recourse stage could be influenced by the first-stage decision.