Bestand wählen
Filter anzeigen Filter ausblenden
1-12 von 17 Ergebnissen
Anzeige anpassen
  • Sortieren nach:
19:05 IS&T Electronic Imaging (EI) Symposium Englisch 2015

An objective method for 3D quality prediction using visual annoyance and acceptability level

This study proposes a new objective metric for video quality assessment. It predicts the impact of technical quality parameters relevant to visual discomfort on human perception. The proposed metric is based on a 3-level color scale: (1) Green - not annoying, (2) Orange - annoying but acceptable, (3) Red - not acceptable. Therefore, each color category reflects viewers' judgment based on stimulus acceptability and induced visual annoyance. The boundary between the “Green" and “Orange" categories defines the visual annoyance threshold, while the boundary between the “Orange" and “Red" categories defines the acceptability threshold. Once the technical quality parameters are measured, they are compared to perceptual thresholds. Such comparison allows estimating the quality of the 3D video sequence. Besides, the proposed metric is adjustable to service or production requirements by changing the percentage of acceptability and/or visual annoyance. The performance of the metric is evaluated in a subjective experiment that uses three stereoscopic scenes. Five view asymmetries with four degradation levels were introduced into initial test content. The results demonstrate high correlations between subjective scores and objective predictions for all view asymmetries. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
  • Erscheinungsjahr: 2015
  • Herausgeber: IS&T Electronic Imaging (EI) Symposium
  • Sprache: Englisch
18:06 IS&T Electronic Imaging (EI) Symposium Englisch 2015

Visual perception and stereoscopic imaging: an artist's perspective

This paper continues my 2014 February IS and T/SPIE Convention exploration into the relationship of stereoscopic vision and consciousness (90141F-1). It was proposed then that by using stereoscopic imaging people may consciously experience, or see, what they are viewing and thereby help make them more aware of the way their brains manage and interpret visual information. Environmental imaging was suggested as a way to accomplish this. This paper is the result of further investigation, research, and follow-up imaging. A show of images, that is a result of this research, allows viewers to experience for themselves the effects of stereoscopy on consciousness. Creating dye-infused aluminum prints while employing ChromaDepth® 3D glasses, I hope to not only raise awareness of visual processing but also explore the differences and similarities between the artist and scientist―art increases right brain spatial consciousness, not only empirical thinking, while furthering the viewer’s cognizance of the process of seeing. The artist must abandon preconceptions and expectations, despite what the evidence and experience may indicate in order to see what is happening in his work and to allow it to develop in ways he/she could never anticipate. This process is then revealed to the viewer in a show of work. It is in the experiencing, not just from the thinking, where insight is achieved. Directing the viewer’s awareness during the experience using stereoscopic imaging allows for further understanding of the brain’s function in the visual process. A cognitive transformation occurs, the preverbal “left/right brain shift,” in order for viewers to “see” the space. Using what we know from recent brain research, these images will draw from certain parts of the brain when viewed in two dimensions and different ones when viewed stereoscopically, a shift, if one is looking for it, which is quite noticeable. People who have experienced these images in the context of examining their own visual process have been startled by the effect they have on how they perceive the world around them. For instance, when viewing the mountains on a trip to Montana, one woman exclaimed, ”I could no longer see just mountains, but also so many amazing colors and shapes”―she could see beyond her preconceptions of mountains to realize more of the beauty that was really there, not just the objects she “thought” to be there. The awareness gained from experiencing the artist’s perspective will help with creative thinking in particular and overall research in general. Perceiving the space in these works, completely removing the picture-plane by use of the 3D glasses, making a conscious connection between the feeling and visual content, and thus gaining a deeper appreciation of the visual process will all contribute to understanding how our thinking, our left-brain domination, gets in the way of our seeing what is right in front of us. We fool ourselves with concept and memory―experiencing these prints may help some come a little closer to reality. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
  • Erscheinungsjahr: 2015
  • Herausgeber: IS&T Electronic Imaging (EI) Symposium
  • Sprache: Englisch
54:32 IS&T Electronic Imaging (EI) Symposium Englisch 2015

A Stereoscope for the PlayStation Generation

Ian Bickerstaff from Sony Computer Entertainment gave this wonderful presentation, which discussed some of the interesting technology challenges of presenting stereoscopic 3D images in a head-mounted display in anticipation of the upcoming release of the Sony Project Morpheus VR headset. The presentation was fully shown in stereoscopic 3D and used the 3D visuals to maximum effect to give the audience an "in-depth" explanation of the topic.
  • Erscheinungsjahr: 2015
  • Herausgeber: IS&T Electronic Imaging (EI) Symposium
  • Sprache: Englisch
53:27 IS&T Electronic Imaging (EI) Symposium Englisch 2015

What is stereoscopic vision good for?

Stereo vision is a resource-intensive process. Nevertheless, it has evolved in many animals including mammals, birds, amphibians and insects. It must therefore convey significant fitness benefits. It is often assumed that the main benefit is improved accuracy of depth judgments, but camouflage breaking may be as important, particularly in predatory animals. In humans, for the last 150 years, stereo vision has been turned to a new use: helping us reproduce visual reality for artistic purposes. By recreating the different views of a scene seen by the two eyes, stereo achieves unprecedented levels of realism. However, it also has some unexpected effects on viewer experience. The disruption of established mechanisms for interpreting pictures may be one reason why some viewers find stereoscopic content disturbing. Stereo vision also has uses in ophthalmology. Clinical stereoacuity tests are used in the management of conditions such as strabismus and amblyopia as well as vision screening. Stereoacuity can reveal the effectiveness of therapy and even predict long-term outcomes post surgery. Yet current clinical stereo tests fall far short of the accuracy and precision achievable in the lab. At Newcastle University, we are exploiting the recent availability of autostereo 3D tablet computers to design a clinical stereotest app in the form of a game suitable for young children. Our goal is to enable quick, accurate and precise stereoacuity measures which will enable clinicians to obtain better outcomes for children with visual disorders.
  • Erscheinungsjahr: 2015
  • Herausgeber: IS&T Electronic Imaging (EI) Symposium
  • Sprache: Englisch
16:30 IS&T Electronic Imaging (EI) Symposium Englisch 2015

Evaluation of vision training using 3D play game

The present study aimed to examine the effect of the vision training, which is a benefit of watching 3D video images (3D video shooting game in this study), focusing on its accommodative facility and vergence facility. Both facilities, which are the scales used to measure human visual performance, are very important factors for man in leading comfortable and easy life. This study was conducted on 30 participants in their 20s through 30s (19 males and 11 females at 24.53 ± 2.94 years), who can watch 3D video images and play 3D game. Their accommodative and vergence facility were measured before and after they watched 2D and 3D game. It turned out that their accommodative facility improved after they played both 2D and 3D games and more improved right after they played 3D game than 2D game. Likewise, their vergence facility was proved to improve after they played both 2D and 3D games and more improved soon after they played 3D game than 2D game. In addition, it was demonstrated that their accommodative facility improved to greater extent than their vergence facility. While studies have been so far conducted on the adverse effects of 3D contents, from the perspective of human factor, on the imbalance of visual accommodation and convergence, the present study is expected to broaden the applicable scope of 3D contents by utilizing the visual benefit of 3D contents for vision training. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
  • Erscheinungsjahr: 2015
  • Herausgeber: IS&T Electronic Imaging (EI) Symposium
  • Sprache: Englisch
11:33 IS&T Electronic Imaging (EI) Symposium Englisch 2015

A novel optical design for light field acquisition using camera array

There is pressing need for 3D imaging technology in many areas. A number of light field camera designs are proposed using single image sensor. However, due to the limited size of image sensor chip and optical design, the disparity of the light field captured using single sensor camera systems is very small. Stanford group pioneered an implementation of light field capture systems using camera array. But, since the camera array often employs discrete imaging sensors and associated optics, the coverage image area for 3D reconstruction is limited. We propose a novel optical design approach that customizes the design for each optical channel to maximize the image quality, coverage area, among other design targets. We then integrate the optical design of all imaging channels into a single monolithic piece with compact structure, high reliability and assembly precision. As a result, the captured light field images from all imaging channels have the same object size with uniform image quality, thus greatly improve the quality of 3D light field reconstruction. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
  • Erscheinungsjahr: 2015
  • Herausgeber: IS&T Electronic Imaging (EI) Symposium
  • Sprache: Englisch
14:54 IS&T Electronic Imaging (EI) Symposium Englisch 2015

Load-balancing multi-LCD light field display

We propose a load-balancing multi-LCD light field display technology. The multiple LCD panels operate as a spatial light modulator. Each light ray is the combination of pixels located in multiple LCD panels. The challenging problem is how to decompose the light field into limited layer images and display the light field compressively. Each pixel, as a controllable unit, is in spatial-multiplexing which means one pixel needs to be responsible to modulate multiple target light rays at the same time. We analyze the load imposed on each pixel by casting the light field decomposition as an over-determined equation problem. We found each pixel works in the state of overload and single pixel couldn’t give consideration to all target light rays. In order to reduce the load on pixels and improve display fidelity, we develop a multi-layer and multi-zone joint optimization strategy. The target light field is divided into multiple subzones and each subzone is displayed by multiple LCD panels combining with a dynamic directional backlight. By resolving the target light field, our display system further explores the multi-LCD’s capability of displaying light field and higher quality of light field display is achieved. We test our load-balancing decomposition algorithm based on different scene. The parallax, occlusion and blur of out-of-focus are restored successfully. And a three-layer prototype is constructed to demonstrate that correct light field is displayed in indoor lighting environment. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
  • Erscheinungsjahr: 2015
  • Herausgeber: IS&T Electronic Imaging (EI) Symposium
  • Sprache: Englisch
14:42 IS&T Electronic Imaging (EI) Symposium Englisch 2015

Real object-based 360-degree integral-floating display using multiple depth camera

A novel 360-degree integral-floating display based on the real object is proposed. The general procedure of the display system is similar with conventional 360-degree integral-floating displays. Unlike previously presented 360-degree displays, the proposed system displays the 3D image generated from the real object in 360-degree viewing zone. In order to display real object in 360-degree viewing zone, multiple depth camera have been utilized to acquire the depth information around the object. Then, the 3D point cloud representations of the real object are reconstructed according to the acquired depth information. By using a special point cloud registration method, the multiple virtual 3D point cloud representations captured by each depth camera are combined as single synthetic 3D point cloud model, and the elemental image arrays are generated for the newly synthesized 3D point cloud model from the given anamorphic optic system’s angular step. The theory has been verified experimentally, and it shows that the proposed 360-degree integral-floating display can be an excellent way to display real object in the 360-degree viewing zone. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
  • Erscheinungsjahr: 2015
  • Herausgeber: IS&T Electronic Imaging (EI) Symposium
  • Sprache: Englisch
16:27 IS&T Electronic Imaging (EI) Symposium Englisch 2015

Preference for motion and depth in 3D film

While heuristics have evolved over decades for the capture and display of conventional 2D film, it is not clear these always apply well to stereoscopic 3D (S3D) film. Further, while there has been considerable recent research on viewer comfort in S3D media, little attention has been paid to audience preferences for filming parameters in S3D. Here we evaluate viewers’ preferences for moving S3D film content in a theatre setting. Specifically we examine preferences for combinations of camera motion (speed and direction) and stereoscopic depth (IA). The amount of IA had no impact on clip preferences regardless of the direction or speed of camera movement. However, preferences were influenced by camera speed, but only in the in-depth condition where viewers preferred faster motion. Given that previous research shows that slower speeds are more comfortable for viewing S3D content, our results show that viewing preferences cannot be predicted simply from measures of comfort. Instead, it is clear that viewer response to S3D film is complex and that film parameters selected to enhance comfort may in some instances produce less appealing content.
  • Erscheinungsjahr: 2015
  • Herausgeber: IS&T Electronic Imaging (EI) Symposium
  • Sprache: Englisch
15:38 IS&T Electronic Imaging (EI) Symposium Englisch 2015

Subjective contrast sensitivity function assessment in stereoscopic viewing of Gabor patches

While 3D displays are entering hospitals, no study to-date has explored the impact of binocular disparity and 3D inclination on contrast sensitivity function (CSF) of humans. However, knowledge of the CSF is crucial to properly calibrate medical, especially diagnostic, displays. This study examined the impact of two parameters on the CSF: (1) the depth plane position (0 mm or 171 mm behind the display plane, respectively DP:0 or DP:171), and (2) the 3D inclination (0° or 45° around the horizontal axis of the considered DP), each of these for seven spatial frequencies ranging from 0.4 to 10 cycles per degree (cpd). The stimuli were computer-generated stereoscopic images of a vertically oriented 2D Gabor patch with a given frequency. They were displayed on a 24” full HD stereoscopic display using a patterned retarder. Nine human observers assessed the CSF in a 3-down 1-up staircase experiment. Medians of the measured contrast sensitivities and results of Friedman tests suggest that the 2D CSF as modeled by Barten1 still holds when a 3D display is used as a 2D visualization system (DP:0). However, the 3D CSF measured at DP:171 was found different from the 2D CSF at frequencies below 1 cpd and above 10 cpd. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
  • Erscheinungsjahr: 2015
  • Herausgeber: IS&T Electronic Imaging (EI) Symposium
  • Sprache: Englisch
19:23 IS&T Electronic Imaging (EI) Symposium Englisch 2015

Integration of real-time 3D capture, reconstruction, and light-field display

Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a “end-to-end” 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
  • Erscheinungsjahr: 2015
  • Herausgeber: IS&T Electronic Imaging (EI) Symposium
  • Sprache: Englisch
20:40 IS&T Electronic Imaging (EI) Symposium Englisch 2015

Partially converted stereoscopic images and the effects on visual attention and memory

This study contained two experimental examinations of the cognitive activities such as visual attention and memory in viewing stereoscopic (3D) images. For this study, partially converted 3D images were used with binocular parallax added to a specific region of the image. In Experiment 1, change blindness was used as a presented stimulus. The visual attention and impact on memory were investigated by measuring the response time to accomplish the given task. In the change blindness task, an 80 ms blank was intersected between the original and altered images, and the two images were presented alternatingly for 240 ms each. Subjects were asked to temporarily memorize the two switching images and to compare them, visually recognizing the difference between the two. The stimuli for four conditions (2D, 3D, Partially converted 3D, distracted partially converted 3D) were randomly displayed for 20 subjects. The results of Experiment 1 showed that partially converted 3D images tend to attract visual attention and are prone to remain in viewer’s memory in the area where moderate negative parallax has been added. In order to examine the impact of a dynamic binocular disparity on partially converted 3D images, an evaluation experiment was conducted that applied learning, distraction, and recognition tasks for 33 subjects. The learning task involved memorizing the location of cells in a 5 × 5 matrix pattern using two different colors. Two cells were positioned with alternating colors, and one of the gray cells was moved up, down, left, or right by one cell width. Experimental conditions was set as a partially converted 3D condition in which a gray cell moved diagonally for a certain period of time with a dynamic binocular disparity added, a 3D condition in which binocular disparity was added to all gray cells, and a 2D condition. The correct response rates for recognition of each task after the distraction task were compared. The results of Experiment 2 showed that the correct response rate in the partial 3D condition was significantly higher with the recognition task than in the other conditions. These results showed that partially converted 3D images tended to have a visual attraction and affect viewer’s memory. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
  • Erscheinungsjahr: 2015
  • Herausgeber: IS&T Electronic Imaging (EI) Symposium
  • Sprache: Englisch
von 2 Seiten
Loading...
Feedback