Show filters Hide filters

Refine your search

Publication Year
Organisation found in the video
1-12 out of 28 results
Change view
  • Sort by:
44:43 University of California Irvine (UCI) English 2014

Lecture 01. General Course Information and Introduction to Quantum Mechanics

UCI Chem 131A Quantum Principles (Winter 2014) Instructor: A.J. Shaka, Ph.D Description: This course provides an introduction to quantum mechanics and principles of quantum chemistry with applications to nuclear motions and the electronic structure of the hydrogen atom. It also examines the Schrödinger equation and study how it describes the behavior of very light particles, the quantum description of rotating and vibrating molecules is compared to the classical description, and the quantum description of the electronic structure of atoms is studied. Index of Topics: 0:05:31 Light 0:12:05 Quantization 0:19:10 The Photoelectric Effect 0:28:59 Photon Momentum
  • Published: 2014
  • Publisher: University of California Irvine (UCI)
  • Language: English
50:41 University of California Irvine (UCI) English 2014

Lecture 03. More Postulates, Superposition, Operators and Measurement

UCI Chem 131A Quantum Principles (Winter 2014) Instructor: A.J. Shaka, Ph.D Description: This course provides an introduction to quantum mechanics and principles of quantum chemistry with applications to nuclear motions and the electronic structure of the hydrogen atom. It also examines the Schrödinger equation and study how it describes the behavior of very light particles, the quantum description of rotating and vibrating molecules is compared to the classical description, and the quantum description of the electronic structure of atoms is studied. Index of Topics: 0:00:19 The Postulates of QM 0:05:30 The Momentum Operator 0:08:17 Basic Functions 0:13:44 Orthogonality 0:28:50 Uncertainty 0:30:51 Complementarity 0:35:00 Classical Atoms 0:39:12 Wavefunctions and Orbitals 0:43:37 Confined Systems 0:45:49 The Position Operator
  • Published: 2014
  • Publisher: University of California Irvine (UCI)
  • Language: English
52:11 University of California Irvine (UCI) English 2014

Lecture 04. Complementarity, Quantum Encryption and the Schrödinger Equation

UCI Chem 131A Quantum Principles (Winter 2014) Instructor: A.J. Shaka, Ph.D This course provides an introduction to quantum mechanics and principles of quantum chemistry with applications to nuclear motions and the electronic structure of the hydrogen atom. It also examines the Schrödinger equation and study how it describes the behavior of very light particles, the quantum description of rotating and vibrating molecules is compared to the classical description, and the quantum description of the electronic structure of atoms is studied. Index of Topics: 0:00:20 Localized Wavfunctions 0:11:30 Fourier Series 0:13:21 Quantum cryptography 0:28:32 Time Evolution 0:47:22 A Free Particle
  • Published: 2014
  • Publisher: University of California Irvine (UCI)
  • Language: English
51:12 University of California Irvine (UCI) English 2014

Lecture 25. Optimizing H2+ Molecular Orbital, H2, and Configuration Interaction

UCI Chem 131A Quantum Principles (Winter 2014) Instructor: A.J. Shaka, Ph.D Description: This course provides an introduction to quantum mechanics and principles of quantum chemistry with applications to nuclear motions and the electronic structure of the hydrogen atom. It also examines the Schrödinger equation and study how it describes the behavior of very light particles, the quantum description of rotating and vibrating molecules is compared to the classical description, and the quantum description of the electronic structure of atoms is studied. Index of Topics: 0:03:28 Polarization 0:12:33 H2 0:15:50 Molecular Orbitals for H2 0:18:24 The Potential Energy Curve 0:20:19 The LCAO-MO Problem 0:31:50 The Valence Bond Approach 0:40:28 Wrapping up H2 0:45:53 Bond Order 0:47:28 Comparing H2+ Through He2
  • Published: 2014
  • Publisher: University of California Irvine (UCI)
  • Language: English
52:38 University of California Irvine (UCI) English 2014

Lecture 02. Particles, Waves, the Uncertainty Principle and Postulates of QM

UCI Chem 131A Quantum Principles (Winter 2014) Instructor: A.J. Shaka, Ph.D Description: This course provides an introduction to quantum mechanics and principles of quantum chemistry with applications to nuclear motions and the electronic structure of the hydrogen atom. It also examines the Schrödinger equation and study how it describes the behavior of very light particles, the quantum description of rotating and vibrating molecules is compared to the classical description, and the quantum description of the electronic structure of atoms is studied. Index of Topics: 0:00:20 Louis de Broglie 0:02:32 Where is the Particle? 0:14:49 Waves 0:19:20 Practice Problem: de Broglie Wavelength 0:21:16 Wavefunctions 0:29:16 The Postulates of QM
  • Published: 2014
  • Publisher: University of California Irvine (UCI)
  • Language: English
49:27 University of California Irvine (UCI) English 2014

Lecture 06. Quantum Mechanical Tunneling

UCI Chem 131A Quantum Principles (Winter 2014) Instructor: A.J. Shaka, Ph.D Description: This course provides an introduction to quantum mechanics and principles of quantum chemistry with applications to nuclear motions and the electronic structure of the hydrogen atom. It also examines the Schrödinger equation and study how it describes the behavior of very light particles, the quantum description of rotating and vibrating molecules is compared to the classical description, and the quantum description of the electronic structure of atoms is studied. Index of Topics: 0:00:42 Tunneling 0:29:42 Barrier Penetration 0:44:34 Interpretation
  • Published: 2014
  • Publisher: University of California Irvine (UCI)
  • Language: English
45:06 University of California Irvine (UCI) English 2014

Lecture 10. Particles on Rings and Spheres... a Prelude to Atoms

UCI Chem 131A Quantum Principles (Winter 2014) Instructor: A.J. Shaka, Ph.D Description: This course provides an introduction to quantum mechanics and principles of quantum chemistry with applications to nuclear motions and the electronic structure of the hydrogen atom. It also examines the Schrödinger equation and study how it describes the behavior of very light particles, the quantum description of rotating and vibrating molecules is compared to the classical description, and the quantum description of the electronic structure of atoms is studied. Index of Topics: 0:02:23 Particle on a Ring 0:16:49 Quantization 0:24:23 Preparation of Atoms 0:27:16 Spherical Polar Coordinates 0:31:18 Particle on a Sphere 0:33:03 The Legendrian 0:35:06 Spherical Polar Coordinates
  • Published: 2014
  • Publisher: University of California Irvine (UCI)
  • Language: English
51:00 University of California Irvine (UCI) English 2014

Lecture 11. Particle on a Sphere, Angular Momentum

UCI Chem 131A Quantum Principles (Winter 2014) Instructor: A.J. Shaka, Ph.D Description: This course provides an introduction to quantum mechanics and principles of quantum chemistry with applications to nuclear motions and the electronic structure of the hydrogen atom. It also examines the Schrödinger equation and study how it describes the behavior of very light particles, the quantum description of rotating and vibrating molecules is compared to the classical description, and the quantum description of the electronic structure of atoms is studied. Index of Topics: 0:01:47 The Solution in Phi 0:03:10 The Solution in Theta 0:24:11 Energy Quantization 0:30:41 The Spherical Harmonics 0:33:26 Transitions 0:37:20 Spin 0:42:21 Stern-Gerlach Experiment 0:48:11 Electron Spin
  • Published: 2014
  • Publisher: University of California Irvine (UCI)
  • Language: English
46:44 University of California Irvine (UCI) English 2014

Lecture 24. A closer look at our Molecular Orbital: The Virial Theorem in Action

UCI Chem 131A Quantum Principles (Winter 2014) Instructor: A.J. Shaka, Ph.D Description: This course provides an introduction to quantum mechanics and principles of quantum chemistry with applications to nuclear motions and the electronic structure of the hydrogen atom. It also examines the Schrödinger equation and study how it describes the behavior of very light particles, the quantum description of rotating and vibrating molecules is compared to the classical description, and the quantum description of the electronic structure of atoms is studied. Index of Topics: 0:01:11 Comparing the Results 0:04:04 H2+ Molecular Orbitals 0:05:32 The Coefficients 0:06:58 Normalization 0:09:00 The Orbitals are Different 0:14:22 The Virial Theorem 0:28:27 Checking our MO 0:37:01 Optimizing the Energy
  • Published: 2014
  • Publisher: University of California Irvine (UCI)
  • Language: English
52:47 University of California Irvine (UCI) English 2014

Lecture 19. The Hydride Ion (Try #3!)

UCI Chem 131A Quantum Principles (Winter 2014) Instructor: A.J. Shaka, Ph.D Description: This course provides an introduction to quantum mechanics and principles of quantum chemistry with applications to nuclear motions and the electronic structure of the hydrogen atom. It also examines the Schrödinger equation and study how it describes the behavior of very light particles, the quantum description of rotating and vibrating molecules is compared to the classical description, and the quantum description of the electronic structure of atoms is studied. Index of Topics: 0:00:38 Hydride Try #3 0:42:20 The Orbital Approximation 0:49:42 Hartree-Fock Approach
  • Published: 2014
  • Publisher: University of California Irvine (UCI)
  • Language: English
53:15 University of California Irvine (UCI) English 2014

Lecture 26. Qualitative MO Theory

UCI Chem 131A Quantum Principles (Winter 2014) Instructor: A.J. Shaka, Ph.D Description: This course provides an introduction to quantum mechanics and principles of quantum chemistry with applications to nuclear motions and the electronic structure of the hydrogen atom. It also examines the Schrödinger equation and study how it describes the behavior of very light particles, the quantum description of rotating and vibrating molecules is compared to the classical description, and the quantum description of the electronic structure of atoms is studied. Index of Topics: 0:00:29 MO Diagrams 0:03:36 Qualitative Guidelines 0:10:08 Homonuclear Diatomics 0:18:13 Bond Order Matches Intuition 0:29:42 Photoelectron Spectroscopy 0:35:53 Hybrid Orbitals 0:45:13 Making Bonds 0:48:24 Normalizing the Hybrids 0:50:09 Other Hyrbid Combinations
  • Published: 2014
  • Publisher: University of California Irvine (UCI)
  • Language: English
50:30 University of California Irvine (UCI) English 2014

Lecture 28. What We've Covered: Course Summary

UCI Chem 131A Quantum Principles (Winter 2014) Instructor: A.J. Shaka, Ph.D Description: This course provides an introduction to quantum mechanics and principles of quantum chemistry with applications to nuclear motions and the electronic structure of the hydrogen atom. It also examines the Schrödinger equation and study how it describes the behavior of very light particles, the quantum description of rotating and vibrating molecules is compared to the classical description, and the quantum description of the electronic structure of atoms is studied. Index of Topics: 0:05:11 Matter and Radiation 0:07:33 Postulates of Quantum Mechanics 0:10:11 Measurements 0:12:11 Uncertainty 0:13:36 Time Evolution 0:15:37 Bound States 0:17:56 Tunneling 0:19:49 Unbound States 0:21:06 Approximate Solutions 0:24:28 Spectroscopy 0:26:19 Atomic Structure 0:33:05 Pauli Principle 0:34:11 Molecules 0:42:25 Chemical Bonds 0:43:17 Dissociation 0:45:04 Delocalized Systems
  • Published: 2014
  • Publisher: University of California Irvine (UCI)
  • Language: English
out of 3 pages
Loading...
Feedback
AV-Portal 3.6.0 (ecdfbe1492e563fa2305056b6ba267cdae273179)

Timings

  521 ms - page object
   56 ms - search
    8 ms - highlighting
    1 ms - highlighting/18879
    0 ms - highlighting/18881
    1 ms - highlighting/18882
    1 ms - highlighting/18904
    0 ms - highlighting/18880
    1 ms - highlighting/18884
    1 ms - highlighting/18888
    0 ms - highlighting/18889
    1 ms - highlighting/18903
    0 ms - highlighting/18897
    1 ms - highlighting/18898
    1 ms - highlighting/18906