Purely vision-based collective movement of robots
Collective movement inspired by animal groups promises inherited benefits for robot swarms, such as enhanced sensing and efficiency. However, while animals move in groups using only their local senses, robots often obey central control or use direct communication, introducing systemic weaknesses to the swarm. In the hope of addressing such vulnerabilities, developing bio-inspired decentralized swarms has been a major focus in recent decades. Yet, creating robots that move efficiently together using only local sensory information remains an extraordinary challenge. In this work, we present a decentralized, purely vision-based swarm of ten terrestrial robots, the first of its kind. Within our framework, robots achieve collisionless, polarized motion through minimal visual interactions, computing everything on board based exclusively on their camera streams, making central processing or direct communication obsolete. With agent-based simulations, we further show that using this model, even with a strictly limited field of view and within confined spaces, ordered group motion can emerge, while also highlighting key limitations. Our results set the stage for advanced, decentralized vision-based robotic swarms capable of diverse tasks and offer a multitude of practical applications.