We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Phantom dependencies in Python (and what to do about them)

Formale Metadaten

Titel
Phantom dependencies in Python (and what to do about them)
Serientitel
Anzahl der Teile
779
Autor
Mitwirkende
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The increasing use of AI-driven Python libraries necessitates robust scanning of Python projects for vulnerabilities. However, Python's dynamic typing and reliance on manifest files for dependency management make it challenging to detect hidden "phantom" dependencies. These unreported dependencies introduce uncertainty and risk into software composition analysis, as seen in OpenAI's baseline codebase. This session explores program analysis, particularly reachability analysis, to expose these phantom dependencies and create accurate dependency sets. Despite the challenges posed by Python's dynamic nature, program analysis remains crucial for secure and reliable software development. Understanding phantom dependencies and their impact is vital for Python developers to build robust and secure software.