We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

MLtraq: Track your ML/AI experiments at hyperspeed

Formal Metadata

Title
MLtraq: Track your ML/AI experiments at hyperspeed
Title of Series
Number of Parts
131
Author
License
CC Attribution - NonCommercial - ShareAlike 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor and the work or content is shared also in adapted form only under the conditions of this
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Every second spent waiting for initializations and obscure delays hindering high-frequency logging, further limited by what you can track, an experiment dies. Wouldn’t loading and starting tracking in nearly zero time be nice? What if we could track more and faster, even handling arbitrarily large, complex Python objects with ease? In this talk, I will present the results of comparative benchmarks covering Weights & Biases, MLflow, FastTrackML, Neptune, Aim, Comet, and MLtraq. You will learn their strengths and weaknesses, what makes them slow and fast, and what sets MLtraq apart, making it 100x faster and capable of handling tens of thousands of experiments. This presentation will not only be enlightening for those involved in AI/ML experimentation but will also be invaluable for anyone interested in the efficient and safe serialization of Python objects.