We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Lies, damned lies and large language models

Formal Metadata

Title
Lies, damned lies and large language models
Title of Series
Number of Parts
131
Author
Contributors
License
CC Attribution - NonCommercial - ShareAlike 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor and the work or content is shared also in adapted form only under the conditions of this
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Would you like to use large language models (LLMs) in your own project, but are troubled by their tendency to frequently “hallucinate”, or produce incorrect information? Have you ever wondered if there was a way to easily measure an LLM’s hallucination rate, and compare this against other models? And would you like to learn how to help LLMs produce more accurate information? In this talk, we’ll have a look at some of the main reasons that hallucinations occur in LLMs, and then focus on how we can measure one specific type of hallucination: the tendency of models to regurgitate misinformation that they have learned from their training data. We’ll explore how we can easily measure this type of hallucination in LLMs using a dataset called TruthfulQA in conjunction with Python tooling including Hugging Face’s `datasets` and `transformers` packages, and the `langchain` package. We’ll end by looking at recent initiatives to reduce hallucinations in LLMs, using a technique called retrieval augmented generation (RAG). We’ll look at how and why RAG makes LLMs less likely to hallucinate, and how this can help make these models more reliable and usable in a range of contexts.