We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

#Haystack: Thought Vectors, Knowledge Graphs, and Curious Death(?) of Keyword Search

Formal Metadata

Title
#Haystack: Thought Vectors, Knowledge Graphs, and Curious Death(?) of Keyword Search
Title of Series
Number of Parts
48
Author
Contributors
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The world of information retrieval is changing. BERT, Elmo, and the Sesame Street gang are moving in, shouting the gospel of "thought vectors" as a replacement for traditional keyword search. Meanwhile many search teams are now automatically extracting graph representations of the world, trying their best to also provide more structured answers in the search experience. Poor old keyword search seems so outdated by comparison - is it dead, dying, or simply misunderstood? Contrary to popular belief, embeddings and thought vectors only solve a small subset of search problems, and each of these three tools (keyword search, thought vectors, and knowledge graphs) actually serves a critical role in building the next generation of search experiences. In this talk, we'll define and highlight the strengths and weaknesses of each of these search methodologies, discuss the role each should play in a modern search solution, and demonstrate where each fails to get the job done and also how they can best complement each other to optimize relevance. We'll walk through interactive, open source demos showing each of these three types of search in action, demonstrating how to balance the strengths, weaknesses and tradeoffs between them for different user intents and query types.