We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

#bbuzz: Scaling up Deep Learning by Scaling Down

Formal Metadata

Title
#bbuzz: Scaling up Deep Learning by Scaling Down
Title of Series
Number of Parts
48
Author
Contributors
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In the last few years, deep learning has achieved dramatic success in a wide range of domains, including computer vision, artificial intelligence, speech recognition, natural language processing and reinforcement learning. However, good performance comes at a significant computational cost. This makes scaling training expensive, but an even more pertinent issue is inference, in particular for real-time applications (where runtime latency is critical) and edge devices (where computational and storage resources may be limited). This talk will explore common techniques and emerging advances for dealing with these challenges, including best practices for batching; quantization and other methods for trading off computational cost at training vs inference performance; architecture optimization and graph manipulation approaches.