We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

#bbuzz: The lean principles of DataOps

Formal Metadata

Title
#bbuzz: The lean principles of DataOps
Title of Series
Number of Parts
48
Author
Contributors
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Modern data processing environments resemble factory lines, transforming raw data to valuable data products. The lean principles that have successfully transformed manufacturing are equally applicable to data processing, and are well aligned with the new trend known as DataOps. In this presentation, we will explain how applying lean and DataOps principles can be implemented as technical data processing solutions and processes in order to eliminate waste and improve data innovation speed. We will go through how to eliminate the following types of waste in data processing systems: * Cognitive waste - unclear source of truth, dependency sprawl, duplication, ambiguity. * Operational waste - overhead for deployment, upgrades, and incident recovery. * Delivery waste - friction and delay in development, testing, and deployment. * Product waste - misalignment to business value, detach from use cases, push driven development, vanity quality assurance. We will primarily focus on technical solutions, but some of the waste mentioned requires organisational refactoring to eliminate.