We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Poisoned pickles make you ill

Formale Metadaten

Titel
Poisoned pickles make you ill
Serientitel
Anzahl der Teile
141
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 4.0 International:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Don’t you love pickles? In the data science space, the pickle module has become one of the most popular ways to serialise and distribute machine learning models - yet, pickles introduce a wide range of problems. For starters, it is incredibly easy to poison a pickle. Once this happens, a poisoned pickle can be used by an attacker to inject any arbitrary code into your ML pipelines. And what’s even worse: it’s incredibly hard to detect if a pickle has been poisoned! Good news? Help is on the way! You now have access to an increasing number of tools to help you generate higher-quality pickles. And when those are not enough, you can always draw inspiration from the DevOps movement and their trust-or-discard processes. This talk will show you how widespread pickles are and how easy it is to poison models serialised with pickle, but also how easy it is to start protecting them from attacks.