We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

An energy-based finite-strain model for 3D heterostructured materials

Formal Metadata

Title
An energy-based finite-strain model for 3D heterostructured materials
Title of Series
Number of Parts
17
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
This talk presents a mathematical model that accurately describes the intrinsic strain response of 3D heterostructures arising from lattice mismatch. Combining materials with different lattice constants induces strain, leading to the bending of such heterostructures. To validate our model, we apply it to bimetallic beams and hexagonal hetero-nanowires and perform numerical simulations using finite element methods (FEM). In order to assess the fidelity of the model and the accuracy of simulations, we compare the calculated curvature with analytically derived formulations. The outcomes of our study yield valuable insights into the behavior of strained bent heterostructures. We compare the strain profiles of wurtzite and zincblende crystal structures, shedding light on their distinct characteristics. This is particularly significant as the strain has the potential to influence piezoelectricity, the electronic band structure, and the dynamics of charge carriers.