We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Numerical Methods for Coupled Drift-Diffusion and Helmholtz Models for Laser Applications

Formal Metadata

Title
Numerical Methods for Coupled Drift-Diffusion and Helmholtz Models for Laser Applications
Title of Series
Number of Parts
17
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Semiconductor lasers are pivotal components in modern technologies, spanning medical procedures, manufacturing, and autonomous systems like LiDARs. Understanding their operation and developing simulation tools are paramount for advancing such technologies. In this talk, we present a mathematical PDE model for an edge-emitting laser, combining charge transport and light propagation. The charge transport will be described by a drift-diffusion model and the light propagation by the Helmholtz equation. We discuss a coupling strategy for both models and showcase initial numerical simulations.