We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Towards a mathematical architecture for more flexible scientific modeling

00:00

Formal Metadata

Title
Towards a mathematical architecture for more flexible scientific modeling
Title of Series
Number of Parts
33
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In developmental biology we find modeling problems that stretch the boundaries of traditional computational science: complex local information-processing, regulation of dynamically changing neighborhood relations, reticulated geometric structures of multiple dimensionalities, highly heterogeneous laws of motion, and a rich multiscale structure. It may be advantageous to enlist automation in the form of mathematical AI (artificial intelligence, both symbolic and machine learning) to help manage this essential model complexity. Machine learning (ML) naturally applies to the problem of finding scale changes in mathematical models, as we will show. But a new kind of mathematical AI/ML may be required overall, in order to create such an “intelligent” architecture for multiscale scientific modeling. To that end I suggest desiderata, consider useful new and existing mathematical ingredients, and propose an overall structure for such an architecture.