We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Search and Sushi; Freshness Counts

Formal Metadata

Title
Search and Sushi; Freshness Counts
Title of Series
Number of Parts
69
Author
Contributors
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Search and ranking over datasets which are constantly evolving in real time is a challenging problem at scale. Updating the documents in the index with real time signals like inventory status and click through rates can improve the search experience considerably. The fields which needs to be updated at scale can be used as hard filters as part of the retrieval strategy or as another ranking signal. In this talk we’ll present an overview of the real time indexing architecture of Vespa.ai which supports true in-place partial updates of searchable fields, including tensor fields. We also compare the real time indexing architecture of Vespa.ai with search engines built on the Apache Lucene library.