We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Deep Learning, Neuroscience and the future of AI

Formale Metadaten

Titel
Deep Learning, Neuroscience and the future of AI
Serientitel
Anzahl der Teile
69
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Rapid growth in machine learning and AI has made huge leaps in expanding the capabilities of machines. But this has come at the large energy cost of compute clusters which are making a bad impact on the environment. At the same time advances in computational neuroscience and neuromorphic engineering are converging and offering a viable bio-inspired alternatives to AI which perform with orders of magnitude less energy requirements, much faster latency, and many unique advantages. My talk would inform the audience about this new trend and the many exciting developments happening in academia and the industry like bio-inspired neural networks and neuromorphic hardware platforms (Intel, Qualcomm, IBM, etc.).