We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Reproducible and shareable notebooks across a data science team

Formal Metadata

Title
Reproducible and shareable notebooks across a data science team
Title of Series
Number of Parts
56
Author
Contributors
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
At CybelAngel we scan the internet looking for sensitive data leaks belonging to our clients. As the volume of alerts could count billions of samples, we use machine learning to throw away as much noise as possible to reduce the analysts' workload. We are a growing team of data scientists and a machine learning engineer, planning to double in size. Each of us contributes to projects and we use Notebooks before code industrialisation. As for many other data science teams, a lot of effort and valuable work is encapsulated in a format that is tricky to share, hardly reproducible and simply not built for production purposes. During the talk, we will present what we did to overcome some of these issues and our feedback about notebook versioning and implementation in Google Cloud Platform using open JupyterHub and Jupytext. This talk is addressed to a technical audience but all roles gravitating around a data team are welcome to grasp the challenges of the interaction of data science within the organisation.