We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Cellular BV-BFV-BF theory

00:00

Formal Metadata

Title
Cellular BV-BFV-BF theory
Title of Series
Number of Parts
15
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We will present an example of a topological field theory living on cobordisms endowed with CW decomposition (this example corresponds to the so-called BF theory in its abelian and non-abelian variants), which satisfies the Batalin-Vilkovisky master equation, satisfies (a version of) Segal's gluing axiom w.r.t. concatenation of cobordisms and is compatible with cellularaggregations. In non-abelian case, the action functional of the theory is constructed out of local unimodular L-infinity algebras on cells; the partition function carries the information about the Reidemeister torsion, together with certain information pertaining to formal geometry of the moduli space of local systems. This theory provides an example of the BV-BFV programme for quantization of field theories on manifolds with boundary in cohomological formalism. This is a joint work with Alberto S. Cattaneo and Nicolai Reshetikhin.