We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

B-Methods: Geometric Integrators for Blowup Problems

00:00

Formal Metadata

Title
B-Methods: Geometric Integrators for Blowup Problems
Title of Series
Number of Parts
22
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Time dependent nonlinear partial differential equations, like for example reaction diffusion equations, are usually solved by classical time marching schemes, like Runge-Kutta methods, or linear multi-step methods. Such equations can however have solutions which blow up in finite time, and in the blowup regime, the behavior of the solution is dominated by the non-linearity. I will show two different approaches how one can construct specialized numerical time integrators which take into account the physics of the underlying non-linear problem. I will show both theoretically and numerically that their performance can be orders of magnitude better than the performance of classical time integrators for such problems.