We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Multisymplecticity of hybridizable discontinuous Galerkin methods

Formal Metadata

Title
Multisymplecticity of hybridizable discontinuous Galerkin methods
Title of Series
Number of Parts
22
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
This talk discusses the application of hybridizable discontinuous Galerkin (HDG) methods to canonical Hamiltonian PDEs. We present necessary and sufficient conditions for an HDG method to satisfy a multisymplectic conservation law, when applied to such a system, and show that these conditions are satisfied by "hybridized" versions of several of the most commonly-used finite element methods. These finite element methods may therefore be used for high-order, structure-preserving discretization of Hamiltonian PDEs on unstructured meshes. (Joint work with Robert McLachlan.)