We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A phononic quantized quadrupole insulator

Formal Metadata

Title
A phononic quantized quadrupole insulator
Title of Series
Number of Parts
15
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date2017
LanguageEnglish

Content Metadata

Subject Area
Genre
Abstract
All existing topological band structures can be traced back to a quantized dipole moment, or a mathematical generalization thereof. Recently, it has been shown theoretically, how the quadrupole moment of a charge distribution can be quantized. The associated phenomenology includes in-gap states on surfaces two or more dimensions lower than the bulk. Here, we report on the experimental observation of such a quadrupole state in a mechanical metamaterial made from weakly coupled oscillators in a silicon membrane. We characterize the topological in-gap “corner-states” together with the induced gapped edge modes.