We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Harmonic map methods in spectral geometry

Formal Metadata

Title
Harmonic map methods in spectral geometry
Title of Series
Number of Parts
48
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date2021
LanguageEnglish

Content Metadata

Subject Area
Genre
Abstract
Over the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to connections to the study of sphere-valued harmonic maps and minimal immersions. In this talk, I'll describe a series of results which shed new light on this problem by relating it to the variational theory of the Dirichlet energy on sphere-valued maps. Recent applications include new (H^{-1}-)stability results for the maximization of the first and second Laplacian eigenvalues, and a proof that metrics maximizing the first Steklov eigenvalue on a surface of genus g and k boundary components limit to the \lambda_1-maximizing metric on the closed surface of genus g as k becomes large (in particular, the associated free boundary minimal surfaces in B^{N+1} converge as varifolds to the associated closed minimal surface in S^N). Based on joint works with Mikhail Karpukhin, Mickael Nahon and Iosif Polterovich.