We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Knots, minimal surfaces and J-holomorphic curves

Formal Metadata

Title
Knots, minimal surfaces and J-holomorphic curves
Title of Series
Number of Parts
48
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date2021
LanguageEnglish

Content Metadata

Subject Area
Genre
Abstract
I will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space which have ideal boundary equal to L, and in this way obtain a knot invariant. In other words the number of minimal surfaces doesn’t depend on the isotopy class of the link. These counts of minimal surfaces can be organised into a two-variable polynomial which is perhaps a known polynomial invariant of the link, such as HOMFLYPT. “Counting minimal surfaces” needs to be interpreted carefully here, similar to how Gromov-Witten invariants “count” J-holomorphic curves. Indeed I will explain how this “minimal surface polynomial" can be seen as a Gromov-Witten invariant for the twistor space of hyperbolic 4-space. This leads naturally to a new class of infinite-volume 6-dimensional symplectic manifolds with well behaved counts of J-holomorphic curves. This gives more potential knot invariants, for knots in 3-manifolds other than the 3-sphere. It also enables the counting of minimal surfaces in more general Riemannian 4-manifolds, besides hyperbolic space.