We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Quantum Nature of Gravity in the Lab: Assumptions, Implementation and Applications on the Way

Formal Metadata

Title
Quantum Nature of Gravity in the Lab: Assumptions, Implementation and Applications on the Way
Title of Series
Number of Parts
30
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date2021
LanguageEnglish

Content Metadata

Subject Area
Genre
Abstract
There is no empirical evidence yet as to â whetherâ gravity has a quantum mechanical origin. Motivated by this, I will present a feasible idea for testing the quantum origin of the Newtonian interaction based on the simple fact that two objects cannot be entangled without a quantum mediator. I will show that despite its weakness, gravity can detectably entangle two adjacent micron sized test masses held in quantum superpositions even when they are placed far apart enough to keep Casimir-Polder forces at bay. A prescription for witnessing this entanglement through spin correlations is also provided. Further, I clarify the assumptions underpinning the above proposal such as our reasonable definition of â classicalityâ , as well as relativistic causality. We note a few ways to address principal practical challenges: Decoherence, Screening EM forces and Inertial noise reduction. I will also describe how unprecedented compact sensors for classical gravity (including meter scale sensors for low frequency gravitational waves) will arise on the way to the above grand goal.
Keywords
German
German
English
English