We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Exceptional splitting of reductions of abelian surfaces with real multiplication

Formal Metadata

Title
Exceptional splitting of reductions of abelian surfaces with real multiplication
Title of Series
Number of Parts
43
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Chavdarov and Zywina showed that after passing to a suitable field extension, every abelian surface A with real multiplication over some number field has geometrically simple reduction modulo p for a density one set of primes p. One may ask whether its complement, the density zero set of primes p such that the reduction of A modulo p is not geometrically simple, is infinite. Such question is analogous to the study of exceptional mod p isogeny between two elliptic curves in the recent work of Charles. In this talk, I will discuss how to apply Charles's method to the setting of certain abelian surfaces with real multiplication. This is joint work with Ananth Shankar.