We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Formal Verification of Chemical Reaction Network Equivalence: A Bisimulation Approach

Formal Metadata

Title
Formal Verification of Chemical Reaction Network Equivalence: A Bisimulation Approach
Title of Series
Number of Parts
13
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The Chemical Reaction Network (CRN) model is a language designed to describe the behavior of chemical or biological molecules. Determining whether, in a given semantics, two CRNs have the same behavior is an interesting problem both in itself and for its uses in practice. Such practical uses that have been demonstrated include understanding biological systems by comparison to simple, well-understood CRNs, and verifying that physical implementations of abstract CRNs correctly implement their intended specifications. We defined a concept of CRN equivalence based on bisimulation as explored in concurrent systems, and explored its implications for CRNs in the low-copy-number semantics. We then explored algorithms to check whether two CRNs satisfy this concept of equivalence, and the computational complexity of that task. I will present this definition and our results, and place them in context with other concepts and methods to check CRN equivalence. I will also touch on the uses of this area of theory in practical molecular programming.
Keywords