We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Robust permanence of polynomial dynamical systems

Formal Metadata

Title
Robust permanence of polynomial dynamical systems
Title of Series
Number of Parts
13
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
A “permanent” dynamical system is one whose positive solutions stay bounded away from zero and infinity. The permanence property has important applications in biochemistry, cell biology, and ecology. Inspired by reaction network theory, we define a class of polynomial dynamical systems called tropically endotactic. We show that these polynomial dynamical systems are permanent, irrespective to the values of (possibly time-dependent) parameters in these systems. These results generalize the permanence of 2D reversible and weakly reversible mass-action systems.
Keywords