We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Local weak convergence, Zeta limits and random topology

Formal Metadata

Title
Local weak convergence, Zeta limits and random topology
Title of Series
Number of Parts
18
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Local weak convergence is a powerful framework for study of sparse graph limits and has been successfully applied in obtaining exact expectation asymptotics in probabilistic combinatorial optimization​, statistical physics and random graph theory. In particular, it can be used to show that sum of lifetime sum of $H_0$-persistent diagram on a mean field model (complete graph with i.i.d. weights) converges to $\zeta(3)$, where $\zeta$ is the Riemann-zeta function. Further, using this framework the minimum cost function on the complete bipartite graph with i.i.d. weights was shown to converge to $\zeta(2)$. In this talk, we shall look at some underlying ideas behind such results and wonder about the possibility of extensions to random topology. As is to be expected, when we move from random graphs to random complexes, there will be fewer answers and more questions.