We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Universal minimal flows relative to a URS

Formal Metadata

Title
Universal minimal flows relative to a URS
Title of Series
Number of Parts
14
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Let G be a locally compact group and let Sub(G) denote the compact space of closed subgroups of G. G acts naturally on Sub (G) by conjugation. A uniformly recurrent subgroup (URS) of G is a closed, minimal subset of Sub (G). To every minimal topological dynamical system of G one can naturally associate its stabilizer URS and Glasner and Weiss asked whether every URS can be obtained in this manner. We answer this question in the affirmative by constructing, for a fixed URS H, a G-flow with stabilizer URS equal to H and universal for all minimal flows whose stabilizer URS is subordinate to H. This is joint work with Nicolas Matte Bon.