We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Full-dispersion shallow water models and modulational instability

00:00

Formal Metadata

Title
Full-dispersion shallow water models and modulational instability
Title of Series
Number of Parts
27
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In the 1960s, Benjamin and Feir, and Whitham, discovered that a Stokes wave would be unstable to long wavelength perturbations, provided that the product of the carrier wave number and the undisturbed water depth exceeds $\approx 1.363$. In the 1990s, Bridges and Mielke studied the corresponding spectral instability in a rigorous manner. But it leaves some important issues open, such as the spectrum away from the origin. The governing equations of the water wave problem are complicated. One may resort to simple approximate models to gain insights. I will begin by Whitham's shallow water equation and the modulational instability index for small amplitude and periodic traveling waves, the effects of surface tension and constant vorticity. I will then discuss higher order corrections, extension to bidirectional propagation and two-dimensional surfaces. This is partly based on joint works with Mat Johnson (Kansas) and Ashish Pandey (Illinois).