We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Robust pearling inhibition in multicomponent bilayers

Formal Metadata

Title
Robust pearling inhibition in multicomponent bilayers
Title of Series
Number of Parts
27
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In continuum models bilayers are homoclinic structures that are generically unstable within second-order systems as the associated translational mode has a single zero. Within the single-component, functionalized Cahn-Hillard (FCH) free energy the unstable mode balances against surface diffusion to generate pearling modes: spatially periodic high-frequency lateral variations in the bilayer width that can be weakly stable or weakly unstable. Almost all biologically relevant lipid bilayers are composed of multiple types of lipids. We present a two-component FCH system constructed from a Geirer-Meinhardt (GM) model that possesses one-parameter families of bilayers with adjustable composition. Tuning the composition induces a real-to-complex eigenvalue bifurcation in the underlying GM system yields robust pearling inhibition (stability) in the full system.