We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Nondegeneracy and stability of periodic traveling waves in a fractional NLS equation

Formal Metadata

Title
Nondegeneracy and stability of periodic traveling waves in a fractional NLS equation
Title of Series
Number of Parts
27
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In the stability and blowup for traveling or standing waves in nonlinear Hamiltonian dispersive equations, the non-degeneracy of the linearization about such a wave is of paramount importance. That is, one must verify the kernel of the second variation of the Hamiltonian is generated by the continuous symmetries of the PDE. The proof of this property can be far from trivial, especially in cases where the dispersion admits a nonlocal description where shooting arguments, Sturm-Liouville theories, and other ODE methods may not be applicable. In this talk, we discuss the non degeneracy and nonlinear orbital stability of antiperiodic traveling wave solutions to a class of defocusing NLS equations with fractional dispersion. Key to our analysis is the development of a ground state theory and oscillation theory for linear periodic, fractional Schrodinger operators with antiperiodic boundary conditions. This is joint work with Kyle Claassen (KU).