We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A geometric method for analyzing operators with low-rank perturbations

00:00

Formal Metadata

Title
A geometric method for analyzing operators with low-rank perturbations
Title of Series
Number of Parts
27
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We consider the problem of finding the spectrum of an operator taking the form of a low-rank (rank one or two) non-normal perturbation of a self-adjoint operator. We use a simple idea of classical differential geometry (the envelope of a family of curves) to analyze the spectrum. When the rank of the perturbation is two, this allows us to view the system in a geometric way through a ``phase plan'' in the perturbation strengths. We show how to apply this technique to two problems: a neural network model of the oculomotor integrator (Anastasio and Gad 2007), and a nonlocal model of phase separation (Rubinstein and Sternberg 1992). This is work with Tom Anastasio and Jared Bronski (UIUC).